United States Patent

US009454561B2

(12) (10) Patent No.: US 9,454,561 B2
Gullin 45) Date of Patent: Sep. 27,2016
(54) METHOD AND A CONSISTENCY CHECKER 2004/0034699 Al* 2/2004 Gotzcccoevein HO4L 12/24
FOR FINDING DATA INCONSISTENCIES IN 2007/0067278 Al* 3/2007 Borodziewi GO6F 1;9390%52
OIodZICWICZ ...
A DATA REPOSITORY 2007/0282824 Al* 12/2007 Ellingsworth GO6F 17/30616
(75) Inventor: Patrick Gullin, Karlskrona (SE) 2009/0244290 Al* 10/2009 McKelvey H0413\£‘§; i;i
(73) Assignee: Telefonaktiebolaget LM Ericsson 2010/0257149 Al* 10/2010 Cognigni GOGF 17/30575
(Publ), Stockholm (SE) 707/698
)] o) 2011/0138312 Al* 6/2011 Yeh wooovrrvvvennnn, GO6F 17/30539
(*) Notice: Subject to any disclaimer, the term of this 715/771
patent is extended or adjusted under 35 2014/0074731 A1* 3/2014 Lande ... G06Q 10/06395
U.S.C. 154(b) by 0 days. 705/306
2014/0089310 Al™* 3/2014 Myers ... GOGF 17/3071
(21) Appl. No.: 14/407,482 707/737
(22) PCTHiled: Jun. 15, 2012 FOREIGN PATENT DOCUMENTS
(86) PCT No.: PCT/SE2012/050659
§ 371 (c)(1), EP 1258814 Al 11/2002
(2), (4) Date: Dec. 12, 2014 WO 2007098817 AL 9/2007
(87) PCT Pub. No.: WO02013/187816 * cited by examiner
PCT Pub. Date: Dec. 19, 2013 Primary Examiner — Joshua Bullock
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Patent Portfolio Builders,
US 2015/0169669 A1 Jun. 18, 2015 PLLC
(51) Imt.CL (57) ABSTRACT
GOGF 17730 (2006.01) A consistency checker and (200) a method performed by a
GO6N 5/02 (2006.01) . S : .
consistency checker (200) for finding inconsistencies of data
GO6N 7/00 (2006.01)
posts stored in a data repository (220) is provided. The
(52) US. ClL) consistency checker (200) has a storage unit (202) in which
CPC ... GO6F 1 7/ 30371 (2013.01): GOGF 1 7/ 30303 a number of inconsistency patterns are stored, each incon-
(2013.01); GOGF 1 7/. 30578 (2013.01); GO6N sistency pattern being associated with an inconsistency
. M 0.2 7 (2_013'01)’ GOG6N 7/005 (2013.01) analysis rule for a value of a data attribute. The consistency
(58) Field of Classification Search checker further has a receiving unit (204) for receiving a
CPC .o, GO6F 17/30578;, GO6F 17/30303; data post from the data repository, and a logic unit (206)
GOGF 17/30371 arranged for matching a value of at least one data attribute
USPC s - 707/690 of the data post with a value of the corresponding data
See application file for complete search history. attribute of the stored inconsistency patterns, and if there is
(56) References Cited a match, applying the inconsistency analysis rule that is

U.S. PATENT DOCUMENTS

7,716,068 B2* 5/2010 Ball ... GO6F 19/326

600/300
7,908,249 Bl 3/2011 Gupta et al.
8,918,677 B1* 12/2014 Marokhovsky GOG6F 11/16
707/687

connected with the matched inconsistency pattern to the data
post to evaluate whether there is an inconsistency in the data
post or not, wherein the number of inconsistency patterns
each defines an inconsistency that has previously occurred
for a value of a data attribute in the data repository.

15 Claims, 3 Drawing Sheets

Receiving s data post from a repository

oz

106, _

[Applying the inconsistency |
analysis ule connectedto the |
selected incansistenoy pattern |

i

A
12, TN -
Is there an
inconsistency?

14

| Matehing value of data attribute of data post with the
i stored inconsistency paierns

126_| Repaatwithnew |
\“ maiched patiem | |
L - |

1.
i

[

i o4
!

13 118
LN
Agplying another |

inconsistency |
._.gnaysisrle |

Increase probebility weight for the
inconsistency pattern

i Repest with new data post |

U.S. Patent

Sep. 27, 2016 Sheet 1 of 3

US 9,454,561 B2

Receiving a data post from a repository 02
Matching value of data attribute of data post with the 1 04
stored inconsistency patterns
N . No
Is there a match? ==
\\ 18
1 08 Yos e App|y|ng e

inconsistency

If more than one match, select analysis rule
inconsistency pattern in order & §
ili i N\
of probability weight N 12 0“ .
110 . SO e N
A I\ i ; N e Is therean ™
pplying the inconsistency N inconsistency
analysis rule connected to the \\ \\\\\\\\\ o e
selected inconsistency pattern N Tl .
! N T No
) Yes
126 Repeat with new
matched pattern
12 '
<3 IS there an \\N‘gb g \‘\\‘_\
™S Inconsistency? = .~
Yes Yes
114 _ ; . 122
Y W N ™
Store the
Increase probability weight for the inconsistency
inconsistency pattern " . patternand the
‘ i another analysis rule
L 16 &

Repeat with new data post

Fig. 1

U.S. Patent

US 9,454,561 B2

Fig. 3

Sep. 27, 2016 Sheet 2 of 3
Soc Security Nr Name Age Nationality | Gender
123456987 Jon Smith 42 English Male
987654321 Bob Jackson 29 English Male
700501-1179 Maria Svensson 40 Swedish | Female
750106-9772 | Johan Johansson 35 Swedish Male
555444333 Ben Johnsson 53 American Male
Fig. 2
Data repository A -
Enployer ID |Name Department Role
AX 001 NVary Jones Production Engineer
AD 003 Bob Jackson Economy Manager
AX 005 John Smith Support Administrator
Data repository B
Enpl_ID Salary Bonus level Tax
AX 001 $ 6500 4% $1500
AD 003 $ 7500 4% $1800
AX 005 $4500 2% $1100

U.S. Patent Sep. 27, 2016 Sheet 3 of 3 US 9,454,561 B2

stored inconsistency patterns

If there is a match, appiying the inconsistency

Receiving a data post from a repository 102

Matching value of data attribute of data post with the ; 04

analysis rule connected to the selected inconsistency 11 0

pattern
Fig. 4
Consistency Checker 200
Patterns | _
andRules | 202 208
storage : =
. Memory
;-'“ P ro g r “"__«.\..“..“..\Nu.m“\m\“‘\\\‘\\
Logic | oo
Unit | | Receiving -
T Unit : Data repository
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ o5 204

Fig. 5

.
220



US 9,454,561 B2

1
METHOD AND A CONSISTENCY CHECKER
FOR FINDING DATA INCONSISTENCIES IN
A DATA REPOSITORY

TECHNICAL FIELD

The present disclosure relates generally to a method and
a consistency checker for finding data inconsistencies in a
data repository.

BACKGROUND

It is a well known problem in the computer domain today
that data saved in data repositories may be inconsistent. In
theory, all data in all data sources should be normalized.
Although, in reality this is not the case. The same data may
be saved in many places, in one and the same repository or
in different repositories. If for example two data posts should
be equal but one of them is wrongly entered, these data posts
are inconsistent. In another example two data posts have
initially equal value(s). If later on, one of the data posts is
updated but the other is not, the data in these two data posts
have become inconsistent. That data is inconsistent could
mean that at least two data posts contradict each other. Also
lack of data could be considered as an inconsistency.

To keep control of data inconsistencies, specific data
analyzing tools are used to detect potential inconsistencies.
Although, to search for and detect data inconsistencies may
take a long time and may consume lots of computing
resources.

For example, large mobile operators have data about their
subscribers stored in a Home Location register (HLR). If
such subscriber data from a large mobile operator is to be
exported to a data sheet such as a Microsoft® Excel sheet,
the sheet may be approximately 150 to 200 columns wide
and as much as 100,000,000 rows deep. In order to detect all
possible inconsistencies, all 100,000,000 rows must be
analyzed by a data analyzing tool. It goes without saying that
such an analysis may become quite heavy from a processing
point of view. In the domain of mobile telephony, a redun-
dancy control is often performed between a primary HLR
and a secondary HLR to detect inconsistencies, such as
redundancies and possible changes in data that may occur
when e.g. performing a backup between the primary and the
secondary HLR. Such inconsistencies may be changes in the
primary HLR that has not been replicated to the secondary
HLR. In such a redundancy control, all columns must be
verified which could mean 15,000,000,000-20,000,000,000
comparisons. Of course, such a redundancy control takes a
long time and requires lots of computing resources. In
another, even more interesting example, there are many
criteria that have to be fulfilled for knowing if there is an
inconsistency, for example when data attributes in a data
post are related to each other. In such cases there are also lots
of comparisons that have to be performed, which uses much
computing resources. Consequently, there is a need to per-
form inconsistency analyses faster and by using less com-
puting resources.

SUMMARY

It is an object of the invention to address at least some of
the problems and issues outlined above. More specifically, it
is an object to be able to perform data inconsistency analyses
faster and with less computing resources compared to exist-
ing solutions.

10

15

20

25

30

35

40

45

50

55

60

65

2

The solution according to the present invention may focus
on finding inconsistent data caused by systematic faults,
such as faulty systems or incorrect instructions.

According to a first aspect, a method performed by a
consistency checker is provided for finding inconsistencies
of data posts stored in a data repository. The consistency
checker has access to a number of inconsistency patterns,
each inconsistency pattern being associated with an incon-
sistency analysis rule for a value of a data attribute. The
method comprises: receiving a data post from the data
repository, matching a value of a data attribute of the data
post with a value of a corresponding data attribute of the
stored inconsistency patterns, and, if there is a match,
applying the inconsistency analysis rule that is connected
with the matched inconsistency pattern to the data post to
evaluate whether there is an inconsistency in the data post or
not, wherein the number of inconsistency patterns each
defines an inconsistency that has previously occurred for a
value of a data attribute in the data repository.

By such a method, the accuracy in finding inconsistent
data becomes higher compared to prior art methods. In other
words, by this method for finding inconsistent data, a higher
percentage of inconsistent data are found early in the pro-
cess. Consequently, a better inconsistency finding result is
achieved. Since the number of inconsistency patterns each
defines inconsistencies that have previously occurred, incon-
sistency will be efficiently found. Consequently, a higher
number of inconsistencies can be found on a shorter time
than with conventional technology.

A data repository is any entity that holds data such as data
base or a document etc. Examples of data repositories are a
relation database accessed via Structured Query Language
(SQL) or a directory service accessed via Lightweight
Directory Access Protocol (LDAP). Other examples are a
Microsoft® Excel file, a Comma Separated Values (CSV)
file or an Extended Markup Language (XML) file.

A data post may be a row in an SQL database table, a row
in a Microsoft® Excel file or a row in a CSV file.

A data attribute may be a part of a data post, or a column
in an SQL database table, a column in an Excel sheet, a
column in a CSV file, or an attribute in an LDAP tree.

An inconsistency analysis rule may be a definition of how
data values of data attributes relate to each other.

With the term “a data post” could be meant one or more
data posts. With the term “a data repository” could be meant
one or more data repositories. The term “a data attribute”
could mean one or more data attributes.

According to a second aspect, a consistency checker is
provided for finding inconsistencies of data posts stored in
at least one data repository. The consistency checker com-
prises: a storage unit in which a number of inconsistency
patterns are stored, each inconsistency pattern being asso-
ciated with an inconsistency analysis rule for a value of a
data attribute and a receiving unit for receiving a data post
from the data repository. The consistency checker further
comprises a logic unit arranged for matching a value of at
least one data attribute of the data post with a value of the
corresponding data attribute of the stored inconsistency
patterns, and, if there is a match, applying the inconsistency
analysis rule that is connected with the matched inconsis-
tency pattern to the data post to evaluate whether there is an
inconsistency in the data post or not, wherein the number of
inconsistency patterns each defines an inconsistency that has
previously occurred for a value of a data attribute in the data
repository.

According to a third aspect, a computer program product
is provided, comprising computer readable code means,



US 9,454,561 B2

3

which when run in a computer causes the computer to
perform the corresponding method according to the first
aspect. The computer may be arranged in a consistency
checker according to the second aspect. More specifically,
the computer may be the logic unit of the consistency
checker.

According to a fourth aspect, a computer program is
provided, comprising computer readable code means, which
when run in computer causes the computer to perform the
corresponding method according to the first aspect.

Further possible features and benefits of this solution will
become apparent from the detailed description below.

BRIEF DESCRIPTION OF DRAWINGS

The solution will now be described in more detail by
means of exemplary embodiments and with reference to the
accompanying drawings, in which:

FIG. 1 is a flow chart illustrating a method according to
an embodiment.

FIG. 2 is a table of a data repository for which the method
according to FIG. 1 may be applied.

FIG. 3 illustrates two tables of a data repository each for
which the method according to FIG. 1 may be applied.

FIG. 4 is a flow chart illustrating a method according to
another possible embodiment.

FIG. 5 is a block diagram illustrating a consistency
checker apparatus according to some possible embodiments.

DETAILED DESCRIPTION

Since searching for inconsistencies in large data reposi-
tories both takes long time and requires a lot of computer
resources, the possibilities to do a large inconsistency analy-
sis is limited.

If an inconsistency analysis could be performed faster and
with less computer recourses, the inconsistency analysis can
be performed more frequent for the same data. If more
frequent inconsistency analysis is done, the need for 100%
accuracy is not always needed, since next analysis probably
will find the majority of the missed inconsistencies in the
previous analysis.

It would be easy to just randomly analyze a limited set of
data with a limited set of rules, but that will only give a
prediction of the inconsistency rate. It will only find incon-
sistencies from the randomly picked data. Thus, the accu-
racy will not be higher than the part of analyzed data. The
reason to this problem is that the accuracy of finding
inconsistencies is linear to the analyzed data. So if 30% of
the data is analyzed, only 30% of the inconsistent data is
found. E.g. finding 70% of inconsistent data can often be
good enough, but with a random analysis this means that
70% of the data must be analyzed, and 70% may for many
data repositories take too long time and require too much
data processing capacity.

Briefly described, a solution is provided that influences
the randomly picked data so that the probability of finding
inconsistent data is increased. Thereby, the accuracy of
finding inconsistencies will be larger than the analyzed part
of the data source(s).

Briefly, this solution may be a method in a consistency
checker for finding inconsistencies in data posts stored in
data repositories, the method comprising receiving a data
post from a data repository, and matching a value of a data
attribute or values of data attributes of the data post with
stored inconsistency patterns. Further, if there is a match, an
inconsistency analysis rule connected to the matched incon-

10

15

20

25

30

35

40

45

50

55

60

4

sistency pattern is applied to evaluate whether there is an
inconsistency in the data post or not. The stored inconsis-
tency patterns may define inconsistencies that have previ-
ously occurred for a value of a data attribute in the data
repository.

The method is particularly advantageous for improving
accuracy in finding inconsistencies caused by faulty systems
or instructions (such as user manuals etc.). Such causes may
cause large data inconsistencies.

This may be achieved by in the consistency checker learn
what kind of consistencies that are relevant to look for, by
memorizing related data as a pattern for a found inconsis-
tency. Next time a data post will be analyzed, the consis-
tency checker will first check if the values of the data
attributes of the data post match any previously found
inconsistency pattern. If so, the inconsistency rule that
detected the previously found inconsistency will be used
instead of any randomly picked rule. In an embodiment, the
found inconsistency that has the highest number of previ-
ously found inconsistencies will be analyzed first. By select-
ing the consistency rule that most likely has found incon-
sistencies based on the values of the data attributes of the
previously analyzed data posts, the probability of finding
inconsistencies is increased.

FIG. 1 shows a method in a consistency checker for
finding inconsistencies of data posts stored in data reposi-
tories. The consistency checker has access to a number of
inconsistency patterns, each inconsistency pattern being
connected with an inconsistency analysis rule for a certain
value of at least one data attribute. According to the method,
a data post is received 102 from a data repository. Thereafter,
a value of a data attribute of the data post is matched 104
with a value of a corresponding data attribute of the number
of inconsistency patterns. If there is a match 106, i.e. if the
value of the data attribute of the data post corresponds to,
e.g. is the same as, the value of the corresponding data
attribute of any of the number of inconsistency patterns, the
inconsistency analysis rule connected to the matched incon-
sistency pattern is applied 110. If there is an inconsistency
found 112, this inconsistency is marked as an inconsistency
for further correction by a correction method, which is out
of the scope of this disclosure. The result of the inconsis-
tency analysis, comprising found inconsistencies, may be an
inconsistency report.

According to an embodiment, if there is an inconsistency
found 112 a probability weight for the inconsistency pattern
may be increased 114. Thereafter, the method is repeated
116 with a new data post. The probability weight is a value
indicating the frequency of this inconsistency pattern being
true. Le. the more often there has been an inconsistency for
this inconsistency pattern, the higher the probability weight.
The probability weight may be used in step 108, which says
that if there is more than one match when matching values
of data attributes of the data post with values of correspond-
ing data attributes of the number of stored inconsistency
patterns, the inconsistency pattern with the highest prob-
ability weight is selected 108.

Further, according to an embodiment, if there is no
inconsistency detected 112 and it was the last matched
pattern 124, the method may be repeated 116 from the
beginning with a new data post. Alternatively, if there is no
inconsistency detected 112 and there are other matched
patterns with a probability weight lower than the last applied
probability weight, the step 108 is repeated 126 with a new
pattern, the new inconsistency pattern that is selected 108
being the next pattern in probability weight order. Alterna-
tively, if there is no inconsistency detected 112 and there are



US 9,454,561 B2

5

other matched patterns with a probability weight lower than
the last applied probability weight, those patterns may be
skipped and the method may be repeated 116 with a new
data post.

According to another embodiment, after matching values
of data attributes of the data post with values of the corre-
sponding data attributes of the stored inconsistency patterns
104, and there is no match found 106, another inconsistency
analysis rule may be applied 118. This another inconsistency
analysis rule may be e.g. a random inconsistency analysis
rule. If there is an inconsistency found 120 when applying
this another rule, the another inconsistency analysis rule is
stored 122 such that the inconsistency checker has access to
the rule. The another inconsistency analysis rule is stored
122 together with the inconsistency pattern for a certain
value of a certain data attribute.

The method is now to be illustrated with an example,
which only comprises one rule and a very small data source,
which is shown in FIG. 2. The data repository comprises the
data attributes Social Security Number (SSN), Name, Age,
Nationality and Gender. The data repository has five data
posts, each data post being a row in the table, e.g. the first
row with the data attribute SSN having value 123456987,
the data attribute Name having value Jon Smith, the data
attribute Age having value 42, the data attribute Nationality
having value English and the data attribute Gender having
value Male.

For Swedish SSNs there is a relation between the SSN,
Gender, and of course Nationality. The ninth digit (**#***-
*4X*) of the SSN tells if the person is a male or a female.
An odd ninth digit tells that the SSN belongs to a man and
an even ninth digit to a woman. This may be called the
Swedish Gender consistency rule (or inconsistency rule). If
we look at the data repository of FIG. 2 we can see that there
is an inconsistency for Maria Svensson. Although, it is
impossible to tell if the 9% digit 7 of the SSN is wrong or if
the Gender Female is wrong.

Based on this knowledge and earlier found inconsisten-
cies in the system we may already have an inconsistency
pattern related to for example the Data attribute SSN having
value “7” as its 9% digit and value “Swedish” for data
attribute Nationality stored. Consequently, when performing
the method according to FIG. 1 for the data posts in the data
repository of FIG. 2, a data post is firstly received 102, for
example the first data post (John Smith etc.). Thereafter, the
value of the 9” digit of the data attribute SSN, and the value
of data attribute Nationality of the first data post, are
matched 104 with the stored inconsistency pattern, i.e. to see
if the values of the data attribute of the first data post match
the values of the inconsistency pattern. In this case, “John
Smith” SSN=*#*##*%_#7% hyut Nationality=English. Since
Nationality is not matched the pattern is not matched.
Thereafter, another inconsistency rule may be applied 118.
Since there is only one rule in this case, the method is
repeated 116 for another data post. Once the third data post
(Maria Svensson) is received 102 there will be a match 106
since for the third data post the value of data attribute
Nationality is Swedish and the value of data attribute
SSN=F#s#¥&x_*7%  Consequently, the Swedish Gender con-
sistency rule will be applied 110. Since the Swedish Gender
consistency rule shows that there is an inconsistency (a
Swedish Woman cannot have a 9 digit in her SSN that is
7), there is an inconsistency noted. Further, the probability
weight for this inconsistency pattern may be increased 114.

As next data post, the 4” data post (Johan Johansson) may
be received 102. When matching the values of the data
attributes SSN and Nationality with the values of corre-

10

15

20

25

30

35

40

45

50

55

60

65

6

sponding data attributes of the inconsistency pattern stored,
there is a match; Nationality is Swedish and the 9 digit is
7. The Swedish Gender consistency rule is applied, but there
is no inconsistency 112. (A Swedish man can have the 9%
digit 7 in his SSN.)

Another example when the method of the invention may
be used is when two data repositories are used. The data
repositories can both contain data based on the same model
(e.g. when comparing redundant data repositories) or dif-
ferent data models. The example of FIG. 3 shows two
different data models, comprising a data repository A and a
data repository B. Data repository A comprises data attri-
butes Employer ID, Name, Department and Role. The data
attribute Role for example comprises values Engineer, Man-
ager and Administrator. The first data post comprises values
AX_001, Mary Jones, Production and Engineer. Data
repository B comprises data attributes Empl_ID, Salary,
Bonus level and Tax. The data attribute Bonus level for
example comprises values 4%, 2%, 4%. The first data post
comprises values AX_001, $6500, 4% and $1500. Let us say
that there is a Manager Bonus consistency rule that says that
Mangers should have 6% bonus every year. By analyzing
both data repositories, it can be found that manager Bob
Jackson does not have the right bonus. We may now have a
stored inconsistency pattern from an earlier inconsistency
for e.g. the data attribute values Bonus level: 4% and Role:
Manager. If any of these data attribute values are true for a
data post, there is a match with the stored inconsistency
pattern and the Manager Bonus consistency rule is applied.
Since there are now two data sources there must be a data
source identifier included in the pattern.

FIG. 4 shows a method performed by a consistency
checker for finding inconsistencies of data posts stored in a
data repository. The consistency checker has access to a
number of inconsistency patterns, each inconsistency pattern
being connected with an inconsistency analysis rule for a
value of a data attribute. The method comprises: receiving
102 a data post from the data repository and matching 104
a value of a data attribute of the data post with the value of
a corresponding data attribute of the stored inconsistency
patterns. Further, if there is a match, the inconsistency
analysis rule that is connected with the matched inconsis-
tency pattern is applied 110 to the data post to evaluate
whether there is an inconsistency in the data post or not,
wherein the number of inconsistency patterns each defines
an inconsistency that has previously occurred for the value
of the data attribute in the data repository.

With reference again to FIG. 1, a number of alternative
embodiments will be described below.

According to an embodiment, each of the number of
inconsistency patterns has a probability weight, which prob-
ability weight is based on a frequency that the inconsistency
of'the inconsistency pattern has occurred for data posts in the
data repository. The method further comprises, if there is
more than one match, selecting 108 inconsistency pattern in
an inconsistency pattern order according to the probability
weight for each matched inconsistency pattern. By selecting
inconsistency patterns among the matched patterns in an
order that is based on earlier probabilities for inconsistencies
occurring for a pattern, it is a higher probability that an
inconsistency will be found among the first checked patterns
than in later checked patterns. Consequently, the probability
of finding an inconsistency early is improved even more.

According to another embodiment, each of the number of
inconsistency patterns has a probability weight, which prob-
ability weight is based on a frequency that the inconsistency
of'the inconsistency pattern has occurred for data posts in the



US 9,454,561 B2

7

data repository. The method further comprises, if the applied
inconsistency analysis rule showed that there is 112 an
inconsistency for the data post, increasing 114 the probabil-
ity weight of the inconsistency pattern connected to the
applied inconsistency analysis rule. By updating probability
weights when going through data posts in the data reposi-
tory, the probability weight is updated such that the most
frequently occurring inconsistency patterns are always
checked first. Consequently, the probability of finding an
inconsistency early is further improved.

According to yet another embodiment, the method com-
prises, if no match 106 is found, applying 118 another
inconsistency analysis rule. The another inconsistency
analysis rule may be a rule connected to another inconsis-
tency pattern or a rule that is not connected to any incon-
sistency pattern. The another inconsistency analysis rule
may be a randomly selected inconsistency analysis rule.
Further, if the applied another inconsistency analysis rule
showed that there is an inconsistency, the method may
comprise storing 122 a new inconsistency pattern together
with the applied another inconsistency analysis rule, the new
inconsistency pattern being associated with a certain value
of a data attribute of the data post. Thus it may be possible
to update the stored inconsistency patterns with a new
inconsistency pattern that has occurred in the data reposi-
tory.

According to still another embodiment, the method may
comprise removing the inconsistency pattern of the number
of inconsistency patterns that has found the least number of
inconsistencies. Thereby, memory capacity of a pattern
storage can be held free.

According to another embodiment, the method may com-
prise repeating 116 the method for a plurality of data posts
in the data repository.

FIG. 5 shows a consistency checker 200 for finding
inconsistencies of data posts stored in at least one data
repository, according to an embodiment. The consistency
checker may be a separate apparatus for finding inconsis-
tencies in data repositories, separate from the data repository

The consistency checker 200 comprises a storage for
patterns and rules 202, in which inconsistency patterns and
inconsistency analysis rules are stored. The rules and pat-
terns are stored such that they are referenced to each other.
The consistency checker further comprises a receiving unit
204 for receiving data from one or more data repositories
220. The receiving unit may also be arranged for fetching
data from the data repository, i.e. not only passively receiv-
ing data but it may also more actively be fetching data from
the repository 220. The receiving unit 204 is connected to a
logic unit 206, which functions like a processor. The logic
unit 206 controls the rest of the units and is arranged to
perform different steps when an inconsistency analysis is
performed. The logic unit is further connected to the patterns
and rules storage 202.

The consistency checker may also comprise a memory
208 in which a computer program may be stored. The
computer program may comprise computer readable code
means, which when run in a computer, such as the logic unit
206 of the consistency checker, causes the computer to
perform the corresponding method according to the inven-
tion. The memory 208 may be connected to the logic unit
206.

According to an embodiment, the consistency checker
comprises a storage unit 202, in which a number of incon-
sistency patterns are stored, each inconsistency pattern being
connected with an inconsistency analysis rule for a value of
a data attribute, and a receiving unit 204 for receiving a data

10

15

20

25

30

35

40

45

50

55

60

65

8

post from the data repository. The consistency checker
further comprises a logic unit 206 arranged for matching a
value of a data attribute of the data post with the value of the
corresponding data attribute of at least one of the stored
inconsistency patterns, and if there is a match, applying the
inconsistency analysis rule that is connected with the
matched inconsistency pattern to the data post to evaluate
whether there is an inconsistency in the data post or not,
wherein the number of inconsistency patterns each defines
an inconsistency that has previously occurred for the value
of the data attribute in the data repository.

According to another embodiment, each of the number of
inconsistency patterns has a probability weight, which prob-
ability weight is based on a frequency that the inconsistency
of'the inconsistency pattern has occurred for data posts in the
data repository. Further, the logic unit 206 is arranged for, if
there is more than one match, selecting inconsistency pattern
in an inconsistency pattern order according to the probability
weight for each matched inconsistency pattern.

According to yet another embodiment, each of the num-
ber of inconsistency patterns has a probability weight, which
probability weight is based on a frequency that the incon-
sistency of the inconsistency pattern has occurred for data
posts in the data repository, Further, the logic unit 206 is
arranged for, if the applied inconsistency analysis rule
showed that there is an inconsistency for the data post,
increasing the probability weight of the inconsistency pat-
tern connected to the applied inconsistency analysis rule.

According to another embodiment, the logic unit 206 is
further arranged for, if no match is found, applying another
inconsistency analysis rule. Further, the logic unit 206 may
be arranged for, if the applied another inconsistency analysis
rule showed that there is an inconsistency, store a new
inconsistency pattern together with the applied another
inconsistency analysis rule, the new inconsistency pattern
being associated with a certain value of a data attribute of the
data post.

According to still another embodiment, the logic unit 206
is further arranged for removing the inconsistency pattern of
the number of inconsistency patterns stored in the storage
unit 202 that has found the least number of inconsistencies.

While the solution has been described with reference to
specific exemplary embodiments, the description is gener-
ally only intended to illustrate the inventive concept and
should not be taken as limiting the scope of the solution. The
solution is defined by the appended claims.

The invention claimed is:

1. A method performed by a consistency checker for
finding inconsistencies of data posts stored in a data reposi-
tory, the consistency checker having access to a number of
inconsistency patterns, each inconsistency pattern being
associated with an inconsistency analysis rule for a value of
a data attribute, the method comprising:

receiving a data post from the data repository;

matching a value of a data attribute of the data post with

a value of a corresponding data attribute of the stored
inconsistency patterns;

if there is a match, applying the inconsistency analysis

rule that is connected with the matched inconsistency
pattern to the data post to evaluate whether there is an
inconsistency in the data post or not, wherein the
number of inconsistency patterns each defines an
inconsistency that has previously occurred for the value
of the data attribute in the data repository,

wherein each of the number of inconsistency patterns has

a probability weight, the probability weight indicating



US 9,454,561 B2

9

a frequency of inconsistency of each of the inconsis-
tency patterns that occurred for the data posts in the
data repository; and
if there is more than one match, selecting inconsistency
pattern in an inconsistency pattern order according to
the probability weight for each matched inconsistency
pattern.
2. The method of claim 1, further comprising:
if the applied inconsistency analysis rule showed that
there is an inconsistency for the data post, increasing
the probability weight of the inconsistency pattern
connected to the applied inconsistency analysis rule.
3. The method of claim 1, further comprising:
if no match is found, applying another inconsistency
analysis rule.
4. The method of claim 3, further comprising, if the
applied another inconsistency analysis rule showed that
there is an inconsistency, storing a new inconsistency pattern
together with the applied another inconsistency analysis
rule, the new inconsistency pattern being associated with a
value of at least one data attribute of the data post.
5. The method of claim 1, further comprising repeating
the method for a plurality of data posts in the data repository.
6. The method of claim 1, further comprising:
removing the inconsistency pattern of the number of
inconsistency patterns that has found the least number
of inconsistencies.
7. The method of claim 1, wherein if there is more than
one match, the inconsistency pattern with highest probabil-
ity weight is selected first.
8. A consistency checker for finding inconsistencies of
data posts stored in at least one data repository, the consis-
tency checker comprising:
a memory circuit in which a number of inconsistency
patterns are stored, each inconsistency pattern being
associated with an inconsistency analysis rule for a
value of a data attribute;
a receiving circuit for receiving a data post from the data
repository; and
a logic circuit arranged for:
matching a value of at least one data attribute of the
data post with a value of a corresponding data
attribute of the stored inconsistency patterns;

if there is a match, applying the inconsistency analysis
rule that is connected with the matched inconsistency
pattern to the data post to evaluate whether there is
an inconsistency in the data post or not, wherein the
number of inconsistency patterns each defines an
inconsistency that has previously occurred for the
value of the data attribute in the data repository,

wherein each of the number of inconsistency patterns
has a probability weight, the probability weight
indicating a frequency of inconsistency of each of
the inconsistency patterns that occurred for the data
posts in the data repository; and

if there is more than one match, selecting inconsistency
pattern in an inconsistency pattern order according to
the probability weight for each matched inconsis-
tency pattern.

10

15

20

25

30

35

40

45

50

10

9. The consistency checker of claim 8, wherein the logic
circuit is further arranged for:

if the applied inconsistency analysis rule showed that

there is an inconsistency for the data post, increasing
the probability weight of the inconsistency pattern
connected to the applied inconsistency analysis rule.

10. The consistency checker of claim 8, the logic circuit
being further arranged for, if no match is found, applying
another inconsistency analysis rule.

11. The consistency checker of claim 10, the logic circuit
being further arranged for, if the applied another inconsis-
tency analysis rule showed that there is an inconsistency,
storing a new inconsistency pattern together with the applied
another inconsistency analysis rule, the new inconsistency
pattern being associated with a certain value of a data
attribute of the data post.

12. The consistency checker of claim 8, the logic circuit
being further arranged for removing the inconsistency pat-
tern of the number of inconsistency patterns stored in a
storage unit that has found the least number of inconsisten-
cies.

13. The consistency checker of claim 8, wherein if there
is more than one match, the inconsistency pattern with
highest probability weight is selected first.

14. A non-transitory computer-readable medium compris-
ing, stored thereupon, computer program code that, when
run in a computer having access to a number of inconsis-
tency patterns, each inconsistency pattern being associated
with an inconsistency analysis rule for a value of a data
attribute, causes the computer to find inconsistencies of data
posts stored in a data repository by:

receiving a data post from the data repository;

matching a value of a data attribute of the data post with

a value of a corresponding data attribute of the stored
inconsistency patterns;

if there is a match, applying the inconsistency analysis

rule that is connected with the matched inconsistency
pattern to the data post to evaluate whether there is an
inconsistency in the data post or not, wherein the
number of inconsistency patterns each defines an
inconsistency that has previously occurred for the value
of the data attribute in the data repository,

wherein each of the number of inconsistency patterns has

a probability weight, the probability weight indicating
a frequency of inconsistency of each of the inconsis-
tency patterns that occurred for the data posts in the
data repository; and

if there is more than one match, selecting inconsistency

pattern in an inconsistency pattern order according to
the probability weight for each matched inconsistency
pattern.

15. The non-transitory computer-readable medium of
claim 14, wherein if there is more than one match, the
inconsistency pattern with highest probability weight is
selected first.



